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Monte Carlo Simulation and Stochastic FEA are used to predict
randomness in the free vibration response of thin unsymmetrically lam-
inated beams. For the present study, it is assumed that randomness in
the response is only caused by uncertainties in the ply orientations. The
ply orientations may become random or uncertain during the manufac-
turing process. A new 16-dof beam element, based on the first-order
shear deformation beam theory, is used to study the stochastic nature of
the natural frequencies. Using variational principles, the element stiff-
ness matrix and mass matrix are obtained through analytical integration.
Using a random sequence a large data set is generated, containing pos-
sible random ply-orientations. This data is assumed to be symmetric.
The stochastic-based finite element model for free vibrations predicts
the relation between the randomness in fundamental natural frequen-
cies and the randomness in ply-orientation. The sensitivity derivatives
are calculated numerically through an exact formulation. The squared
fundamental natural frequencies are expressed in terms of deterministic
and probabilistic quantities, allowing to determine how sensitive they
are to variations in ply angles. The predicted mean-valued fundamental
natural frequency squared and the variance of the present model are in
good agreement with Monte Carlo Simulation. Results, also, show that
variations between +5° in ply-angles can affect free vibration response of

unsymmetrically and symmetrically laminated beams.

INTRODUCTION

In recent years, there has been an increasing de-
mand for laminated composite materials in aircraft
structures. The main reasons are that the compos-
ites posses the following characteristics: lightweight,
cost-effective, and can handle different strengths in
different directions'. However, these materials offer
quite a few challenges to structural engineers. Be-
cause of their inherent complexity, laminated struc-
tures can be difficult to manufacture according to
their exact design specifications, resulting in un-
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wanted uncertainties.

The design and analysis using conventional mate-
rials is easier than those using composites because.
for conventional materials, both material and most
geometric properties have either little or weil known
variation from their nominal value. On the other
hand. the same cannot be said for the design of struc-
tures using laminated composite materials. The
understanding of uncertainties in the laminate com-
posite structures is highly important for an accurate
design and analysis of aerospace and other structures
using composite materials.

These uncertainties are defined as random-
ness from non-cognitive sources involving physical
stochastic likelihood and human factors®. This ran-
domness can occur in each layer and involve quan-
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tities such as: ply-orientations, thickness, density,
and material properties among others. Such varia-
tions can affect the behavior of the structure.

What has intrigued many engineers to study
structures with laminated composites is the com-
plexity of these materials. Since it is costly to an-
alyze a composite structure as a three-dimensional
solid, analysis of many composite structures can be
performed using laminated one and two dimensional
theories, such as beam theory. A review of vari-
ous available theories for analyzing laminated beams
is given by Raciti and Kapania®. Earlier, a 12-dof
element was developed and formulated for deter-
ministic symmetric laminated beams to study their
static and dynamic behaviors!. Later a 20-dof el-
ement (Kapania-Raciti Element) was developed to
study static. free vibration, buckling, and nonlinear
vibrational analysis of unsymmetrically laminated
beams® 8. In both works the effects of uncertain-
ties were not considered.

In considering uncertainties in a system, one can
consider three different approaches: (i) probabilistic
methods. (i) fuzzy set or possibility-based meth-
ods, and (iii) antioptimization”. Here, however, only
the probabilistic approach is considered. The prob-
abilistic analysis can be performed using either an
analytical or a computational approach. An ana-
lytical approach would be most accurate although
cumbersome and impractical except for very sim-
ple systems. However, with the availability of ex-
tremely fast computers, the finite element method
has become a widely used technique for design and
analysis in engineering. Therefore, a finite element
approach using Monte Carlo Simulation is developed
to Lake into account the stochastic nature of the ply-
orientations.

Work done by Vinckenroy® presents a new tech-
nique to analyze these structures by combining the
stochastic analysis and the finite element method in
structural design. Agrawal et al.% used a wavelet-
based stochastic analysis to analyze isotropic beam
structures.

Librescu et al.!® studied the free vibration and
reliability of cantilever composite beams featuring
structural uncertainties. They used a Stochastic
Rayleigh-Ritz formulation. However, to the best of
the authors’ knowledge, no work has been found re-
garding the effect of uncertainties incurring in the
ply-orientations on the natural frequencies of thin
unsymmetrically laminated beams using Stochastic
Finite Element Analysis.

The primary goal of this investigation is to pre-
dict the dynamic behavior of thin unsymmetrically

laminated beams with uncertainties. In order to
study the stochastic nature of the dynamic response
of such beams, a new 16-dof element is developed
using first-order shear deformation beam theory to
account for uncertainties. Only an overview of this
element is presented here, and a more detailed anal-
ysis of this new 16-dof element will be presented
elsewhere. Using this element the free vibration
analysis is performed for only those uncertainties as-
sociated with layer-wise ply-orientations.

16-DOF LAMINATED BEAM ELEMENT

An overview

The present 16-dof laminated beam element takes
into account the existence of various coupling ef-
fects, which play a major roll in laminate composite
materials. This element is valid for the analysis
of both symmetric and unsymmetrically laminated
beams. The motivation to develop a new beam ele-
ment was to have a formulation consistent with the
first-order shear deformation beam theory (FSDT),
able to analyze unsymmetrically laminated beams,
and that would account for most of the uncertainties
involved in a thin laminated beam when modelled
using FSDT. In the present work. the reference sys-
tem of coordinate is such that the r — axis lies
along the length of the beam and the z — azis is
placed at the mid-surface measuring the transverse
displacements. The present work assumes that the
z — z plane divides the beam in two identical parts:
in other words, material, geometry, and loading are
symmetric about the z — z plane. When considering
twisting and ignoring in-plane shear, the displace-
ment field for the first-order shear deformation beam
theory, in the defined reference system, can be ex-
pressed as follows

U(z,y,2) u(z) + zo(x) (1a)
Viz,y.z) = 0 (1b)
W(z,y.z) = w(x)-yr(a) (lc)

Therefore, the finite element formulation considers
eight degrees of freedom at each node: axial dis-
placement u, transverse deflection w. rotation of the
transverse normals ¢, twist angle 7. and their deriva-
tives with respect to z. These nodal displacements
are denoted as

{q} = {u. v ww' 00" T T'}T (2)

The deflection behavior of the beam element for the
first-order theory including transverse twist effect is
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described as follows

u(r) = Nu + N u'l + Naug + Ny u.’z

w(zr) = Niw, + Na wi + Nywg + Ny w,’z 3
z) = Nioy+Nooh+ Noto+Negp O
Hz) = Nin+Nar{+Nsma+Nymy

where the shape functions N,(z) are the well known
Hermitian polynomials.

Constitutive Material Law

In this investigation, all laminated composites are
considered as orthotropic materials. Also, consider-
ing a state of plane stress and eliminating e, from
the stress-strain relationship, the reduced material
coefficients are expressed as Q;;. Since in laminated
composites each ply may have different orientation,
the stresses are expressed in terms of an arbitrary
angle 6 and the transformed stress-strain relation-
ship takes the form of!!

UII
Tyy
Ozy = (4)
Oyz
Oz2
Qn 912 9_16 0 0 €zz
Qiz Q@ Qs O 0 vy
Qs Qa6 Wes _0 _0 2ezy
0 0 0 944 9_45 2ey;
0 0 0 Qi Qss 2er;
where Q.. are the transformed stresses'.

i
[A], [B], [D] Matrices

The extensional matrix [A], the extensional-
bending coupling matrix {B], and the bending stiff-
ness matrix [D] are of great importance in the
present work and these are calculated as follows!?

Nian
Aij = Z Qi (k41 — %) ij=126 (5
k=1

Niom

Ay =K Z Q. (zkar —z) 1,3 =4,5 (6)
k=1
Niam 22— g2
By = Z Q. (_*%__’i) i,j=126 (7)
k=1
L (R R
Dy; = Qs; (—*—3——) i,j=126 (8)
k=1
where K = 2, the shear correction factor'?, and

Niam is the total number of plies considered. When
considering symmetrically laminated composites, {B]

is identically zero and the coupling between bending
and stretching vanish. However, for unsymmetri-
cally laminated beams the coupling cannot be ig-
nored and it must be included in the analysis. In the
presence of uncertainties, laminate composite struc-
tures are no longer symmetric and the analysis of
unsymmetrically laminated structures is a more ac-
curate one.

Laminate Constitutive Relations

The basic constitutive relation is
{N} = (D] {e} (9)

where {N}T is the stress resultant vector, [D] is the
bending-stiffness matrix, and {E}T is the stretching
and bending strain vector.

The displacement field, Eq. (1), suggests that
2e:y = Yzy t IKzy = 0 (10)

Therefore, Nz, and M., are not considered because
they vanish in the strain energy formulation. In ad-

dition, the present formulation assumes:
My, = Ny =0 (11)

This leads to the following bending-stiffness matrix:

o= oy o]
where

oud = | o] W

(Drul = [gi; gizﬂ (14)

(Dirgl = L/Blt: gtz (15)

(D]l = g:z gz (16)

The reduced form of the bending-stiffness matrix is
calculated as

(Dgr] = [Dr1.1) = [D1.11] Dy~ [(Dieg) (17)

Using the above expression. an equivalent
bending-stiffness matrix [D.] for a thin unsymmet-
rically laminated beam is found:

Nz:: DC\ 1 Dt’n 0 0 €zz
A[zx . DC:: DC:: 0 0 Krz
Q: 0 0 Dc-u DCLN Yyz
Qy 0 0 Dc“ Dcu Yrz
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where,

A= B2 - AnDyp

De,, =(Az Bf; — 2412 B2 B+
An By + A%y Doa — Avy Az Dg)/ A

=(B?, Baz + B11 B3, + A2 Bia Dia—
A1g B2z D12 — A2z Biy Doz + Ay Big Da2)/A

Ci2

D.,, =(B%; Dyy — 2 Biz2 Baa Dra+
Ay D%, + B, Doy — Axg Dy D2)/A

D, =Au
D, =Auss
De,, =Ass

Note that the availability of symbolic manipula-
tor like MATHEMATICA®Version 4.0¢ has made it
possible to determine the above matrix analytically.
By obtaining this matrix analytically, the CPU time
is saved, a great help in the Monte Carlo Simulation.

Strain-Displacement Relationship

The strains in the above formulation are related
to the displacements as follows:

s du
2z
KRrz g_g
eb=9 4o (~ = (19)
Yzz 3—1: - y% + ¢

Using Egs. (2), (3) and (19) the strain-displacement
relation can be expressed as

{e} = [Bsd] {4} (20)
where [Bsq| is the strain-displacement matrix.

Element Stiffness Matrix

Using Egs. (9) and (20), and noting that matrix
[D.] has been integrated throughout the thickness,
the strain energy for this new 16-dof beam element
becomes

u=1a) | [[ 1B (DB da| (@} 20

t Mathematica is a registered trademark of Wolfram Re-
search, Inc.

The minimization of Eq. (21) results in the element
stiffness matrix for the 16-dof laminated beam ele-
ment:

L. 0%
[Kﬂ:/o /_h[B,d]T[DC]{B,d] dydr  (22)

where b, is the width of the beam. ¢, is the length
of the beam element, and [D.] is the equivalent
bending-stiffness matrix.

Element Mass Matrix

The kinetic energy for this 16-dof beam element
is

T = %///p[UMV%W? v (23)
v

where p is the mass density. The mass matrix is
obtained by substituting Eq. (1) into Eq. (23) and
then taking the first variation of the kinetic cnergy:

oT = ?—Téu + gdw + gda) + (;—Z—dr

24
ou ow 90 (24)

The mass matrix coefficients are obtained as follows

~

[ L.
duy Ig/ Ni(z)N;(z)dz| u+ (25)

L 0 p
Lll /0 “ Ni(2)N,(2) dx:_ o

_—— ]
Sw; : 10/ Ny(z)N;(x) de| w, (26)
0

-

1 ¢,
3¢ 11/ Ni(z)Nj(z)dr| u+ (27)
0

-

[
Iy Ng(I)fVJ(I)dI Q4
0

L 4

(28)

- .
orj Jz/ N,(.r)Nj(z)d.r} T
0
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where
Niam

Io=b, 9 A" (zks1 = 2) (29)
k=1

Niam 22 _ 22
Li=bY o (—“—*—‘2—") (30)
k=1

Ntam 22 _ 23
B=t Y o (%)

k=1

Z

tam

P* (2k41 — 2k) (32)
1

Jr =

Ll A
wlou

k

In the present work, analytical expressions for co-
efficients of both mass and stiffness matrices are
obtained. Once again, this greatly saves CPU time
for the Monte Carlo Simulation as one no longer has
to perform numerical integration for each case.

FREE VIBRATION ANALYSIS

The Hamilton's principle is used to study the dy-
namic nature of the structure. The principle uses
the Lagrangian which is defined as

L =

where,
T is the total kinetic energy defined by Eq. (23)
U is the total strain energy defined by Eq. (21)
V is the potential of the applied loads

The Hamilton's Principle can be represented as'?

3]
H = {6T - 0U -6V} dt=0 (34)

ty

The free vibration analysis is obtained by setting

3V =0 in Eq. (34). This leads to the free-vibration

equations of motion for the defined finite element

problem:

(M]{q} +{K]{q} =0 (35)
where (M| is the mass matrix and K] is the stiffness
matrix. Further assuming a harmonic response, the
solution of these equations results in an eigenvalue

problem:
([K] -« [M]] {g} =0 (36)

A PROBABILISTIC APPROACH

An overview

The present analysis assumes that the random
data is symmetrically distributed. Therefore, it as-

sumes normal distribution!*:

_ 2
J(2) = = exp [—% (=2) } (37)

T-U-V (33)

where o2 is the variance of the random variable: and
u is the mean value of the random variable. In the
present work, the random variables are considered
as independent and are denoted as

Z={01,02,...,0n} (38)

where §;'s are the ply-angles.

Various methods exist to analyze an uncertain
unsymmetrically laminated beam by integrating
stochastic aspects into the finite element modelling:
perturbation techniques, Taylor Series, and Monte
Carlo Simulation. These techniques have been used
in the past two decades in fields involving random-
ness. Especially, in the last decade there has been a
growing interest in applying these methods to better
understand laminated composite structures. More-
over, with the finite element technique becoming so
popular, there has been a new interest in integrat-
ing the stochastic nature of the structure in the finite
element analysis!®.

Monte Carlo Simulation

Monte Carlo Simulation, although computation-
ally expensive, methods are quite versatile tech-

niques capable of handling situations where other

methods fail to succeed. The MCS is also used
to verify the results obtained from other methods.
Monte Carlo Simulation methods are based on the
use of random numbers and probability statistics to
investigate problems. For purposes of the present
work a random number generator is used to generate
possible angle-variations between —5.0° and 5.0°.

A large sample is generated and then using PDF’s
one evaluates the probability of having such values.
The larger the number of simulations more the con-
fidence in the probability distribution of the results
obtained. Therefore, for the present analysis at least
ten thousand realizations of the uncertain beam are
performed, increasing the accuracy of the ply-angle
distribution fitted to the sample data.

Stochastic Eigenvalue Analysis

The stochastic eigenvalues problem is expressed as
K - AM] {9} =0 (30)

where K, M, X, and ¢ are the stochastic stiffness
matrix, mass matrix, eigenvalues and eigenvectors,
respectively.

The presence of uncertainties in ply angle orienta-
tions results in certain randomness in the extensional
matrix [A], bending-stretching coupling matrix (B},
and bending matrix [D]. Since the coefficients of
these matrices are present in the equivalent bend-
ing stiffness matrix [(D.|, Eq. (18), the matrix [D.]

50F 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS



will have certain randomness associated as well and
these uncertainties are expressed as

(D} = D + D.* (40)

where D,° is the equivalent bending stiffness ma-
trix evaluated at the ply mean values and D.° is
the equivalent bending stiffness matrix taking into
account the random nature of the problem. As a
result, these uncertainties affect the stiffness ma-
trix. However, the mass matrix is not affected when
only considering those uncertainties involving ply-
orientations. Therefore, the mass matrix M is eval-
uated at the given deterministic values.

In problems where uncertainties are considered,
there exists no density function describing the ran-
dom nature of the system. The information is lim-
ited to only the mean values of the random vari-
ables. In such cases, perturbations techniques are
suggested among other existent techniques!® '®. In
the free vibrational analysis of the present problem,
the random nature of the stiffness matrix, eigen-
values, and eigenvectors are studied using a Taylor
series expansion up to second order about the mean

" of each random variable. The present formulation
follows the approach followed by Librescu et al.'®
Opposed to the work done by Librescu et al., the
present formulation can use results provided by com-
mercial finite element codes, greatly reducing the
number of calculations, and calculates the sensitivity
of the eigenvalues up to the second-order approxima-
tion.

Therefore, the random nature of the elastic stiff-
ness. K, is expanded in terms of the mean-centered
zeroth-, first-, and second-order rates of change with
respect to the random variables as

K(x:],zo,...,:r,,): (41}

+ZK’-, +5 ZZK{js.e,

=1 j=1

K° =
T=(i1,02, - Hn)
Kl - 9K
;o=
8:1:. =(p1.432,- L)
K,J _—
axldI] =182, Hn)
S 0= I

The eigenvalues and eigenvectors are also affected
by uncertainties in the ply angles. The perturbed
eigenvalues and eigenvectors are expressed in terms

of their mean-centered zeroth-, first-, and second-
order rates of change with respect to the random
variables as

Eigenvalues

A(I1:I2»~"‘xn) = (42)

0+ Z e + = Z Z Az,

zl]_l

A0 = ,\l
Z=(p1.43, - Hn)
oA
A o= =
O, l2=(p1.p2.-.#in)
N LY I
Y 01,0T; lz=(p1 3, in)
Figenvectors
{p(z1,22,...,20a)} = (43)

WAL

1—1 1=1

{#°} + i{d’:’}fl

(%) = (o} _
Z=(f1,42,--Hn)
T
{¢I} - 0T, lz=(u1 b2, . bin)
3*{o}
I -
{¢ii} - 0%, 0L le=(u1 43, bin)

After substituting Eqs. (42), (43), and (44) into Eq.
(39), the stochastic eigenvalue problem is expressed
as

K° + Z Klei+ - Z Z Kllze,

‘—1)—1

X ¢ +Z¢‘—l+ ZZd’x]""}

=1 =1

SoMe 33 M|

l—l )=1

x { ¢° +Z¢,e.f ZZ%-‘E: (44)

=1 j=1

0
(M

The uncertainties in the random variables are in
general small. As a consequence, in the applied per-
turbation technique it is sufficient to only consider
the first and second derivatives of eigenvectors and
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eigenvalues with respect to the random variables. By
equating the zeroth order terms of ¢; in Eq. (44),
an eigenvalue problem for the mean-valued system
is obtained. From which, the mean-centered zeroth
derivative eigenvalues and associated eigenvectors
are obtained

[K° - A"M°] {¢°} =0 (45)

Premultiplying the first and second order terms of ¢,
in Eq. (44) by {d)O}T and simplifying, the following
expressions are obtained

{#°)" [K! - AIM°] {¢°)
{¢°}T[Kff—f\fj’M°] {¢°} = 0 (47

This results in expressions for the mean-centered
first and second eigenvalue derivatives:
T
. ) K] {6%)
A= 017 [ png0] f 40 (48)
{#°} [M°]{¢"}
T [ pr1r1 0
U T
{0} [M°]{s"}
The advantage of this method is that the eigenvalue
problem needs to be solved only once. The sen-
sitivity analysis is done by using results from the
mean-valued eigenvalue problem. This results in a
great computational saving.
When studying the effect of uncertainties of ran-
dom variables on the fundamental natural frequen-
cies, it is convenient to study their squared value,

i.e., eigenvalues. Ang!® gives a good description on
statistical analysis.

0 (46)

The mean value of the eigenvalue for random vari-
ables is obtained by taking the expected value of Eq.
(43)

pa = EN =A% + = ZZ,\ Elee;)  (50)

1—1 =1
The variance of the eigenvalues is obtained as
Var{\] = E[N?] - p? (51)

For symmetrically distributed independent ran-
dom variables,

Var(A] = (52)
iMﬁmﬂ+

=1

-ZZ A AL {El2e})

=1 k=1

— E[e?)E[e3]}

where
Niam _ 2
E{E? — (Iq #l)
2 Nyam -1
Niam 2 _ 2
E[E?Ei} - (-rq ) (Iq L)
a=1 A’me -1
s — )z = )’
ElEle?] = 1N\ Tr
2183 gjg[ e

and Nyum is the number of samples. equal to ten
thousand in this work.

The standard deviation is calculated as
Var[A] (53)

Calculating derivatives

The above formulation only requires the calcula-
tion of the derivatives of the stiffness matrix. These
derivatives are obtained by taking the derivatives
of the equivalent bending-stiffiness matrix, eq. (18).
However, the derivative for the first two rows and
columns (reduced bending-stiffness matrix) are more
involved. Various numerical schemes exist to eval-
uate these derivatives. When using some of these
numerical schemes, ill-conditioning could be a prob-
lem. This problem can be avoided by the following
formulation which allows the derivatives to be ob-
tained exactly by numerical multiplication. The
technique consists in taking derivatives of eq. (17)

(DRl ,, =Dr4] ,, — (54)
(Dr.u1 ., (Drrar) " (Dirg) -
(D11 [Dirad) 7, Dir) -
(D (Dot} [Dinal
(DRl .., =[D1al,, ;, — (35)
(D11 ,, 2, (Drrat) ™ (Dirg) -
(Dr.a1l 4, [Dr1, 11]_ (Dir1} -
(Dr.a] o (Drrat]” [Dll.l]_xl -
[Dear) 4, [Dinadl 5, (Dind) -
(D141} (D1, u]:,lz [(Drra] -
[Drar) [Drusl) [Dinal
(Drad] o, [Derar]” [DH,I]':_ -
[Dr,11] [Du,ul;i (Drral,, -
(Dr11) (Dreua] ™ (Dienal Z,
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Oimensioniess Fundamental Eigenvaiue for a
90/—45/-45/90 Laminated Beam

- Mo Cano Semuasan |
— Siochase: FEA !

sk Y

1Y

Normal distribution
e

13 14 18 18 17 1

N " 2
Dimansionaless Fundamental Exgenvaiue

Figure 1: Dimensionless Eigenvalue distribution for MCS
and SFEA for a thin symmetrically 4-ply laminated
beams

The derivatives of [D”'”]'l are calculated using the
following matrix definition

[Dll.l(]‘l [Drr.e] =] (56)

and these derivatives being

(Diru] = (57)
~(Drrad) ™ Dread),, (Prrad™

[DH,HI:II = (58)
= [Drrad)3) (Dir.ail (Dirgd)™" -
[Du,u]‘: [Dirat], [Dirad ™ -
(Drra)™ (Di1.14] ,, ., (Drro]™

RESULTS

The numerical results are obtained for a can-
tilevered thin laminated beam. The plies are as-
sumed to be made of Graphite-Epoxy. The beam’s
material and geometrical properties used in the anal-
ysis are$:

Material density:
g-4 Sugs

1.44 1
9 x "

p =
Major in-plane Poisson's ratio:

vy = 030

8 All properties are assumed to be uniform throughout the
beamn

Dirmensionless Fundamental Eigenvalue for a
90/-45/0/25 Laminated Beam

A
/ \
14¢ r
/ \
L ‘ 4

777 vores Care Swmsbon |
— Swchesec FEA

Normai distribution

3 as 4 .8
Dimensionaiess Fundamental Eganvaive

Figure 2: Dimensionless Eigenvalue distribution for MCS
and SFEA for a thin unsymmetrically 4-ply laminated
beams

Dimansioniess Fundamenta) Eigenvaiue tor a
9(/-45/30/0/0/30/—45/90 Larunated Beam

= iaree Cadc Semuabon )
~— Stocheess: FEA i}

X1 1
3

32 24 Er) 2 3 32 14 18 38 [
Omensionaiess Fundamental £ genvalue

Figure 3: Dimensionless Eigenvalue distribution for MCS
and SFEA for a thin symmetrically 3-ply laminated
beams

Young’s Modulus:

E,, = 136x 10° psi
E.; = 1375E,
Shear Modulus:
Gzy = 055Ey,
Gy, = 025E,
Gz: = 025E,,
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Table 1: Statistics analysis

75 oy x 1072
Ply-orientations
MSC SFEA MSC SFEA
[90/-45], 1.63468 | 1.63925 | 0.41519 | 0.41928
[90/-45/0/25] 4.10664 | 4.12107 | 6.44410 | 6.67425
[90/-45/30/0], | 3.23110 | 3.23559 | 2.79163 | 2.80235
[90/-45/30/0/
/25/45/-90/-30} || 4.53781 | 4.54736 | 9.51499 | 9.69171

Dimensioniess Fundamaental Eigenvaiue for a
90/-45/30/0/25/45/-90/-30 Laminated Beam

7= Wame Canla Semwdston |
— Swohasic FEA

Normal distrbution

3 3s 58 ¢

4 45 s
Cwmensionaless Fundamental Eigenvaiue

Figure 4: Dimensionless Eigenvalue distribution for MCS
and SFEA for a thin unsymmetrically 8-ply laminated
beams

Beam's dimensions

Width : bo 1.0 1n
Thickness : ho = 0.5b,
Length : Lbeam = 30.0h,

For both the stochastic finite element analysis
and Monte Carlo Simulation ten beam elements
were used and four different laminated beams are
considered: (i) symmetrically laminated cantilever
beam with four plies, (ii) and unsymmetrically lam-

Sensitivity of the Fundamental Eigenvaiue for a
90/—45/-45/90 Laminated SBeam

First genvatve |
— Second demauvo‘
- - Mean Value

Figure 5: Sensitivity of the dimensionless eigenvalue for
a thin symmetrically 4-ply laminated beams

inated cantilever beam with four plies, (iii) symmet-
rically laminated cantilever beam with ecight plies.
(iv) and unsymmetrically laminated cantilever beam
with eight plies.

The natural frequencies are non-dimensionalized
with respect to the deterministic quantities as fol-
lows '

“”'\Lgeam L

59)
ho Eyy (

Wy =

In general, the ply-angle uncertainties are between
+2°. However, results show the effect in considering
twice the uncertainty in ply orientations, i.e., from
-5° to 5°. The statistical analysis is shown in Table
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Figure 6: Sensitivity of the dimensionless eigenvalue for
a thin unsymmetrically 4-ply laminated beams

Sensitivity of the Fundamental Eigenvaiue for a
90/-45/30/0/0/30/~45/90 Lamenated Beam
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Figure 7: Sensitivity of the dimensionless eigenvalue for
a thin symmetrically 8-ply laminated beams

The results in Figures (1), (2), (3), and (4) show
that the present model has a good correlation when
compared to MCS. These results are obtained for
only 1000 samples opposed to ten thousand us-
ing MCS. As the number of plies is increased the
model correlated even better with MCS. The mean-
valued fundamental eigenvalues are accurately ob-
tained with one hundred samples using the present
model opposed to ten thousand Monte Carlo Simu-
lations.

Figures (5), (6), (7). and (8) show that the eigen-

Sensitivity of the Fundamental Eigenvaliue for a
—4500/0/2.5/&5(—90/40 Lzmunmd Bolm

8000 7000 SOO0 5000 1000

[ 1000 2000 00 000 5000

Sampile number

Figure 8: Sensitivity of the dimensionless eigenvalue for
a thin unsymmetrically 8-ply laminated beams

values are sensitive to the first derivatives and the
second derivatives are not influential. These fig-
ures show that the sensitivity analysis is significant,
therefore the ply angle uncertainties can play an
important roll in affecting free vibrations of symmet-
rically and unsymmetrically laminated thin beams.

CONCLUSIONS

Monte Carlo Simulation has been applied to thin,
symmetric and unsymmetrically laminated beams
with randomness in ply orientation to study the free
vibrations. At least ten thousand realizations of the
Monte Carlo sampling have been performed to im-
prove the accuracy of the analysis.

A second stochastic fnite element approach has
been developed using perturbation methods. Using
Taylor Series expansion the eigenvalues has been ex-
pressed as mean-valued and probabilistic quantities.
The accuracy of the results have been compared to
those obtained by Monte Carlo Simulation.

An elegant way to obtain sensitivity derivatives
is detailed. The present method is advantageous
over other techniques because the eigenvalue prob-
lem needs to be solved only once. With only one
hundred samples our model agrees with ten thou-
sand MCS.

Based upon the results, this method results in a
great computational saving when one is interested
in predicting the statistics of the fundamental natu-
ral frequency of unsymmetric laminated beam in the
presence of ply-angle uncertainties.
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